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1 A fibration

Lemma ([Kup], 21.3.1). There is a fibration (up to weak homotopy)

Diff∂(D
m+1) → C (Dm) → Diff∂(D

m)

with the first map being the inclusion (diffeomorphisms of Dm × I that fix the boundary into diffomor-
phisms of Dm × I that fix ”3 out of 4” sides of the boundary) and the second being restiriction to the
upper edge, that is Dm × {1}.

If we look at the long exact sequence of homotopy groups we get something that looks like

· · · → πiC (Dm) → πiDiff∂(D
m)

∂−→ πi−1Diff∂(D
m+1) → πi−1C (Dm) → · · ·

now we claim that

Lemma. The connecting homomorphism ∂ is given by λi (the Gromoll map).

If we are interested in disc of origin problems, then we are asking what is the image of this
boundary map. But the exactness tells us that this image is the kernel of the map πi−1Diff∂(D

m+1) →
πi−1C (Dm). Therefore the non-triviality of this kernel ”obstructs” the map from being surjective, or
whats the same from pulling back a given sphere to having a smaller disc of origin.

Now from [Igu88] we have that some map

C (Dn) → C (Dn+1)

is max {(n− 4)/3, (n− 7)/4} connected. The map into π0C (Dn) was already shown to be zero (as the
previous map has full image), the next obstruction that can occur is the map into π1C (Dn). To use
the stable results we will need then max {(n− 4)/3, (n− 7)/4} ≥ 1, which implies that n ≥ 7.

Lemma. π1C (Dn) ∼= Z/2Z.
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Proof. In our notes on the rational computation of the homotopy groups of diffeomorphisms
of discs we have shown that there is a weak equivalence in the stable range between

BC (Dn) ≃ ΩWhDiff(Dn)

in particular
π1C (Dn) = π2BC (Dn) = π2ΩWhDiff(Dn) = π3WhDiff(Dn)

by [Kup] the Whitehead spectrum is a weak homotopy invariant of on path connected spaces. Hence
WhDiff(Dn) ≃ WhDiff(∗). We now proceed by computing the local peices of the Whitehead spaces
homotopy groups.

[Wal82, Remark under Cor 3.4] gives us that for all primes p and all j < 2p − 3 there is an
isomorphism between the localised groups

πjWhDiff(∗)(p) ∼= Kj(Z)(p)

Because we are interested in j = 3 we get that for all p prime and p ≥ 5 this isomorphism holds.
Now from the known values of the K(Z) we have that K3(Z) = Z/48Z = Z/(24 × 3)Z. Hence
π3WhDiff(∗)(p) = 0 for primes ≥ 5. Thus it remains to compute the local peices for the primes 2
and 3.

[Rog02, Thm 5.8] computes that

π3WhDiff(∗)(2) ∼= Z/2Z

and [Rog03, Cor 4.9.(b)] computes that

π3WhDiff(∗)(3) ∼= 0

Note that this result in Rognes was stated as conditional on the Quillen–Lichtenbaum conjecture,
however this was soon after proven by Voevodsky, and therefore this result now holds uncondition-
ally.

□

Remark. [Hat78] claims that π1C (Dn) is either (Z/2Z)2 or Z/4Z, for n large using the results from
an from an unpublished paper of his student Igusa. These results are wrong. They are apparently
corrected in [Jah10].

2 Higher Homotopy Groups

We always are in the stable range. So we use πiC (Dn) ∼= πi+2WhDiff(∗).

2.1 π2, π4

We need π4 and π6 of WhDiff(∗), using the same idea as above we have that it is isomorphic at all
primes ≥ 5 to K4(Z) = K6(Z) = 0. Hence we just need the 2 and 3 primary parts of π4 and π6 of
WhDiff(∗), which Rognes kindly tells us are:

π4WhDiff(∗)(2) = 0, π4WhDiff(∗)(3) = 0

π6WhDiff(∗)(2) = 0, π6WhDiff(∗)(3) = 0

Hence stably π2C (Dn) ∼= π4C (Dn) = 0.
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2.2 π3

Again all primes ≥ 5 are given by the K5(Z) = Z. So just need the two and three primary parts given
by

π5WhDiff(∗)(2) = Z, π5WhDiff(∗)(3) = 0

So we conclude that π3C (Dn) ∼= π5WhDiff(∗) ∼= K5(Z) = Z (just to be clear they are all rationally
Q and the torsion parts vanish so they must be Z , given they are finitely generated abelian groups).

2.3 π5

In this case we are dealing with K7(Z) = Z240 = Z24×3×5 = Z24 ⊕Z3 ⊕Z5. In this case the inequality
is for p > 5 and hence all torsion for those primes vanish, as they dont exist in K7(Z). Finally Rognes
tells us that the first 5 torsion is in degree π18WhDiff(∗) the first 3 torsion is in degree 11. Thus it is
only two torsion again given by Z2.

Remark. This method, using Rognes results on odd regular primes, will get you the first 68 homotopy
groups of the concordance space, provided you are not 2 mod 4. At this point we will get that
69 + 2 ̸< 2(37) − 3 where 37 is the first irregular prime. Thus we cannot use our comparison to K
theory to show that the torsion at this prime vanishes. Perhaps there are other methods.

3 The Concordance Obstruction

The idea then is to look at the LES for the fibration above and consider the group π1C (Dn) as an
obstruction to pulling back in the Gromoll filtration. Because the group πiDiff∂(D

n) appears in the
LES above in two places with shifting indicies we can sort of weave them together:

...
...

π1Diff∂(D
n+2) π0Diff∂(D

n+2)

π1C (Dn+1) π0C (Dn+1)

· · · π1Diff∂(D
n+1) π1C (Dn) π1Diff∂(D

n) π0Diff∂(D
n+1) π0C (Dn) π0Diff∂(D

n)

r or

o

where the verticle sequences continue beneath the horrozontal as well. This is looking something like
a spectral sequence and indeed this is the idea behind [Hat78] spectral sequence. The map or is the
differential map in the exact couple he constructs. Now we can fill in some of these groups explicitly

...

π1Diff∂(D
n+2)

Z2 0

· · · π2Diff∂(D
n) π1Diff∂(D

n+1) Z2 π1Diff∂(D
n) π0Diff∂(D

n+1) 0

π0Diff∂(D
n+2)

r or

o
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and our goal is to study this first non-trivial crossing.
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